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Harmonic analysis and function spaces associated with Dunkl operators

Dunkl operators

Tof(x) = Oef(a Z /(@) = floaz)
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on a Euclidean space (RY,(-,-)) are perturbations of the classical directional derivatives d¢ by
difference operators associated with reflections related to a root system R. Here

(o, z)
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Oq =T — 2

denotes the reflection with respect to the hyperplane ot perpendicular to the root o and k(«) is
a non-negative function which satisfies k(o,8) = k(8). o, 8 € R. They were introduced by C.F. Dunkl
and have applications in mathematical physics. Harmonic analysis associated with the Dunkl ope-
rators is a generalization of the classical one. A main object of the theory is the Fourier-Dunkl tfrans-
form

FfE) =cr | E(=i§ z)f(x) w(x)de,

RN
where w(z) = [[,cp (e, 2)[¥® and E(i¢, z) is the so-called Dunkl kernel (a generalization of the
exponential function €¢:*)). The Dunkl transform is an isometric transform on L? = L?(w(x)dx).

In analogue of the classical Fourier analysis, the generalized translations and convolutions are
defined by the formulae

T f(y) = F NFfOE(iz,)y), fxg=F "(FfFg), f.geSRY).

Boundedness of the translations on LP-spaces as well as the Young inequality ||f * g||»
C|lfllz]lgllL» are open problems in the theory. The lost is known to hold if p = 2 or one of the
functions is radial. The Dunkl-Laplace operator A, = Zj.v:lTej is a generator of a semigroup

etBref(x) = fxhy(x) = [ f(y)he(z,y) w(x)dx of contractions on LP(w(z)dx). One can ask about the
following topics in ’rhe theory of the Dunkl operators:

o properties of the generalized translations .. f

¢ upper and lower estimates for the Dunkl heat kernel h;(x, y)

e boundedness of multiplier operators f — F~1(m(&)F(€)) on function spaces
o properties of A,-harmonic functions

e possible characterizations of Hardy spaces (by: maximal functions, relevant Riesz transforms,
atomic decompositions, square functions)

e properties of BM O, functions
During the talk we shall present selected result of the theory. These are joint works with Jean-
Philippe Anker and Agnieszka Hejna.
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